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Large-amplitude compression waves in an adiabatic 
two-fluid model of a collision-free plasma 

By K. W. MORTON 
Courant Institute of Mathematical Sciences, New York 

(Received 1 May 1962) 

The development of large amplitude compression waves in a collision-free plasma 
is studied by considering the motion of a plane piston into a uniform stationary 
plasma containing a magnetic field parallel to the plane of the piston. The 
adiabatic two-fluid equations are solved by finite-difference methods and the 
form of the waves after a long time is compared with the possible steady-state 
solutions. 

A generalized discontinuous solution of the steady-state equations is found for 
sufficiently high Mach numbers. A t  the highest Mach numbers this leads to a 
constant state at the piston; while a t  lower speeds a wave train results whose 
amplitude increases as the speed decreases. In  each of these cases the numerical 
solutions of the time-dependent equations converge rapidly to the steady-state 
solutions. At still lower speeds, where the solitary-wave solution exists, the 
situation is less clear. 

1. Introduction 
Finite-amplitude hydromagnetic waves in a cold two-component plasma with 

no collisions have been the subject of considerable attention since Adam & Allen 
(1958) described the transverse solitary wave. Davis, Lust & Schliiter (1958) 
have found periodic waves and Gardner & Morikawa (1960) have studied the 
asymptotic time-dependent behaviour near an equilibrium state disturbed by 
the motion of a piston. These are all transverse one-dimensional waves, the 
magnetic field being perpendicular to the direction of propagation of the waves. 
More recently, Saffman (1961 a, b )  has studied longitudinal waves and those in 
which the initial magnetic field has an arbitrary orientation. 

The simplest extension of the equations to embrace a warm plasma involves 
the introduction of an isotropic adiabatic pressure: this has been called the 
adiabatic two-fluid model by Gardner et al. (1 958) who considered it as a possible 
first-order approximation to a collision-free shock theory. They showed that 
solitary waves and periodic steady-state solutions also exist for the transverse 
case and these have been studied in detail by Morawetz (1959), Bafios & Vernon 
(1960) and Vernon (1960). 

Our aim in this paper is to study the development of a large-amplitude com- 
pression wave travelling across a magnetic field by using numerical methods, and 
to relate the situations holding after long intervals of time with the known steady- 
state solutions. The specific problem on which attention has been focused is the 
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following: we have a half space of plasma at rest and with uniform density, 
bounded by a plane, perfectly conducting piston, and containing a constant 
magnetic field parallel to the plane of the piston. The piston is now accelerated 
into the plasma to a final velocity at which i t  is held hereafter. The problem is to 
find the ensuing motion of the plasma and the changes in the magnetic field. 
Initially we asked the particular question: does the wave always break as in 
conventional non-dissipative fluid dynamics ? This corresponds in the cold- 
plasma case to the looping of the particle orbits and is known to occur at  a Mach 
number of two. To enable the solutions to be continued beyond this point we have 
introduced a von Neumann-Richtmyer artificial viscosity. 

The first result, suggested by the behaviour of the numerical solutions, is that 
‘for sufficiently strong shocks ’ there exists a generalized solution of the steady- 
state equations that is discontinuous in the fluid variables. This is described in 
$3, which contains a complete account of the steady-state solutions. Briefly, 
there are always two constant states and the types of solution that exist depend 
on the compression ratio 7 between the states and the ratio Po of the fluid to 
magnetic pressure in the initial state. The (7, Po)-plane is divided into three main 
regions: (i) for small 7, the solitary wave and, except for very small Po, all the 
associated periodic waves exist; (ii) the solitary wave ceases to exist when, at its 
peak, the flow speed exceeds the characteristic speed and then only some of the 
periodic waves exist; and (iii) when the characteristic speed exceeds the flow 
speed in the second constant state, the discontinuous solution appears. The two 
constant states have different entropies and only in case (iii) can they be joined 
by a solution. 

The numerical solutions of the time-dependent equations show a very close 
relationship to the steady-state solutions: in case (iii) the convergence to the 
steady-state solution is very rapid; and in case (ii), although convergence is not 
so rapid, a very close identification can be made between the actual solution and 
one composed from the steady-state solutions. This solution consists of a dis- 
continuous leading edge followed by a wave train, the first waves of which are the 
largest periodic solutions that exist in the particular case. In  case (i) the leading 
edge appears to be no longer discontinuous and no such identification has been 
found possible. 

Similar work has been described by Auer, Hurwitz & Kilb (1961, 1962). Their 
results are identical to ours when no breaking occurs, but they use a semi-physical 
model to treat the breaking and then obtain results which appear quite different. 

2. The equations of motion 
We consider an infinite piston lying in the (g,z)-plane and moving in the positive 

x-direction so that all quantities depend only on x and the time t .  Then, with the 
magnetic field B confined to the z-direction, the only other electromagnetic 
quantities occurring in the equations are E and J ,  the y-components of the 
electric field and current. 

In  the present approximation we assume quasi-neutrality of charge and a total 
ion and electron pressure p that is isotropic in the (x, y)-planet and satisfies a 

t The velocity dispersion in the z-direction is unaffected. 
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perfect gas law with adiabatic exponent y = 2. Then the motion of the electrons 
and ions is described by the moment equations (derivable from the collisionless 
Boltzmann equation) in terms of their total mass density p ,  their common 
velocity u in the x-direction, the pressure p ,  and the total internal energy 
density E .  

The full set of equations can be written in dimensionless form after the intro- 
duction of the following characteristic quantities: 

a, = B,/(,up,)a, the initial Alfvkn speed; 
Po = p0/(B;/2,u), 
x, = ( - e+e-,up,/m+m-)-~ = ( ,~KW;) -& ,  

the ratio of the initial fluid and magnetic pressures; 
the characteristic length. 

This length may be regarded either as the ratio of the speed of light ( p - 4  to the 
plasma frequency up or as the geometric mean of the gyromagnetic radii of the 
ions and electrons moving across the initial field with speed a,. Here we have used 
rationalized M.K.S. units, ,u is the magnetic permeability of free space, and m,, m- 
and e+, e- are the ion and electron masses and charges. 

Finally, normalizing to an initial density and magnetic field of unity, we obtain 
the following equations. 

Conservation of mass : 
Conservation of x-momentum: 
Conservation of y-momentum: 
Conservation of energy: 
Maxwell's equations : Bt+Ex = 0,  B,+J = 0. 

Pt + ( P U ) ,  = 0. 
p(ut + uu,) +p, = J B .  

J t  + (uJ) ,  = p(E-uB). 
Zt+ [ ~ ( e + p ) ] ,  = J E .  

It is convenient to introduce, instead of the current J ,  the difference velocity? 

2.' = J / p ,  (2.7) 

in terms of which the internal energy becomes 
e = +p(u2+ w2) +p.  

Equation (2.3) is then replaced by 

V ~ + U V ,  = E-uB ,  (2.9) 

v, = p - B .  (2.10) 

p = B = l ,  p=+P0,  E = u = v = O .  (2.11) 

which combined with (2.1) and (2.5) can be integrated to yield 

The initial conditions (and those at x = +co, t > 0) are: 

We assume the piston to be a perfect conductor: thus E equals UB just imide the 
plasma and, from (2.9), it  follows that the derivative of v along the piston path is 
zero. The boundary conditions a t  the piston are then 

u = up(t), prescribed; v = 0. (2.12) 

( - e,e-im+m-)* (mile+ - m-le-) v. 

t The actual difference between the ion and electron velocities is 
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It will be noticed that when Po = 0 these boundary conditions, together with 
equation (2.2), will not allow the piston to be accelerated. For Po > 0, a boundary 
layer will develop at the piston which will become increasingly severe as Po -+ 0 
and prevent us from computing the limiting case. 

This set of equations is not purely hyperbolic: the conservation equations have 
the usual characteristics for non-dissipative fluid flow; but by taking the speed 
of light as infinite Maxwell’s equations, in particular (2.6) and (2.10), are para- 
bolic in character. In  the limit of small field gradients, however, v is identically 
zero and we are led to the simple one-fluid theory arising from the assumption of 
perfect conductivity. The equations reduce to those of ordinary fluid dynamics 
with a total pressure p + +B2 and we have the usual phenomena of steepening 
compression waves and broadening rarefaction waves. 

Thus we would expect some initial steepening of waves generated by moving 
the piston into the plasma, until the diffusive effects of the parabolic field equa- 
tions take over. These may be sufficient to prevent completely the breaking of 
weak waves but at  Mach numbers around two, which in the cold-plasma case 
corresponds to the onset of orbit crossings, breaking will still occur. The nature 
of the discontinuity formed in this case is readily apparent from the equations. 
If p and B remain finite then so, by equation (2.10), will v,. Thus there will be no 
jump in B or v but only in the fluid quantities p, u andp: and the jump conditions 
must be just the Rankine-Hugoniot relations in these variables. 

3. Steady-state solutions of the equations 
In  this section we shall consider solutions of the equations of $ 2  which are 

steady when viewed from a frame of reference moving with a constant velocity U ,  
the ‘shock’ velocity. These have been studied quite extensively by previous 
authors, the most complete description being that of Vernon (1960)-see also 
Baiios & Vernon (1960). However, the existence of discontinuous solutions 
seems to have been completely overlooked: although when the restriction to a 
completely cold plasma both in front of and behind the wave is made, this 
possibility no longer exists. 

The solitary wave first described by Adlam & Allen (1958), and the periodic 
waves by Davis et al. (1958), as well a8 the discontinuous solution, are all involved 
in describing the steady state eventually attained in the piston problem. So we 
shall give a complete description of all the steady-state solutions. Our approach 
is essentially that of Morawetz (1959). 

With the use of primes to denote quantities referred to the moving frame of 
reference, the conservation equations become on integration 

and 

pu‘= -u, 
- Uu‘+p++B2 = U2++PO++, 
-u’(Z’+p)+UB = U p o + g U 3 + U ,  

(3.1) 

(3.2) 

(3.3) 

where the constants of integration have been determined from the initial state; 
in the last equation we have used the deduction from (2.5) that 

E’ = E+ UB = const. = U .  
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Now we replace the density p by the specific volume V = p-1 and substitute into 
(3.3) the expressions for u' obtained from (3.1), that for p from (3.2), and for 8' 
from (2.8). The result is a quadratic for P in terms of B and v: 

3U2V2 - 2 V(2U2 + 1 +Po - B2) + (U2 - ~2 - 2B + 2 + ZP,) = 0. (3.4) 

The remaining equations (2.10) and (2.6) become 

Vdv/dx+BV- 1 = 0 (3.5) 

and VdB/dx+v = 0. (3.6) 

Thus solutions are described by this pair of equations for B and ZI with V defined 
by one of the roots of (3.4). Constant states correspond to singular points of the 
differential equations, given by vi = 0, B+K = 1. If we substitute 1/B for P in 
(3.4) with v = 0: we find one root corresponding to the initial state B, = V, = 1, 
and the other, B, = 7 = l /K ,  which we would like to identify with a final state 

(3.7) 
and for which 

As the conditions in the constant states are just those corresponding to the 
assumption of perfect conductivity, equations (3.1) to (3.3) reduce in this case to 
the Rankine-Hugoniot conditions for the single fluid with a total pressure 
p+fBB2 and energy -?+ BB2V. Hence equation (3.7) is the usual Prandtl shock 

(3.8) 
relation 

where p2 = Q and c; = 1 +Po. Clearly, when the compression ratio 7 is greater 
than unity, the shock velocity U is greater than the magneto-sonic speed 

The solutions themselves are most conveniently described in the (B, v)-plane: 
with these co-ordinates, equations (3.5) and (3.6) define a direction field on a two- 
sheeted surface, each sheet corresponding to a root of the quadratic (3.4) for V .  
The form of each solution is determined by its behaviour near the two singular 
points and the nature of the roots for V .  We consider the singular points first. 

The discriminant for the characteristic equation takes on the simple form 
F2 a( PB)/aB at the singular points, which on computing the derivative becomes 

u2 = W+P0)7/ (3-7) .  

p2";2+(1-p2)c; = u;u;, 

(1 +Po)+* 

hi = (M:- 1 -bi)/K(Mi-P,J (i = 0 , l ) .  (3.9) 

Here M: = ui2pi/B2 = V$U2 is the square of the Alfvkn Mach number, and 
pi = 2pi/B: is the ratio of the fluid to the magnetic pressure. At the initial state 
M t  = U2 2 1 +Po for 7 2 1, so that this singular point is always a saddle point 
in the cases we are interested in. It is also easily ascertained that it always lies 
on the sheet corresponding to the larger of the roots for 7. At the second singular 
point M2, is always less than 1 +pl, so that we have a centre if M2, > p, and a 
saddle point if M2, < P1. This condition can be written in the form: 

saddle point if 3(7- 1)/q2(3-7) > l/(l+po), (3.10) 

from which it is apparent that it is satisfied only for sufficiently large 7. It can 
also be shown that when this is so the singular point lies on the sheet of the smaller 
V root. Thus in the only case when solutions may issue from both singular points 
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they are on different sheets and may, in general, be joined only by a discontinuity 
in V .  

The two sheets corresponding to the roots for V are joined on a closed convex 
curve on which the roots are equal. Inside the curve the roots become complex so 
that no physically admissible solution may cross into this region. If  we write the 
equation for the curve in the form 

{B2 - 3( 1 + P o )  (7 - - 7)j2 - 12( 1 + P o )  B(B- 7)/(3 -7) + 3U2V2 = 0,  (3.11) 

we see that i t  always lies to the right of the second singular point (B, = 7, v, = 0 ) ,  
passing through it when (3.10) becomes an equality: as observed above it is a t  
this point that the second singular point changes from one sheet to the other. 

Solitary wave and all 
periodic solutions Solitary wave and 

some periol I! Domain& 
;iic solutions 

0.8 1 
periodic 

I solutions 

Discontinuous 
04 

1.0 L‘U J W  gas uynaruics 

r 
FIGURE 1. Domains of existence of the steady-state solutions and the positions 

of cases I to V. 

We can now give a complete description of the three main types of steady- 
state solution. For any given value of Po (0  < Po < 03) the situation depends on 
one other parameter describing the ‘shock’ strength: this could be either U or 7, 
which are related by equation (3.7), but because of the convenience of its range 
of possible values (1  < 7 < 3) we shall use the latter. The values of these para- 
meters for which each situation holds are shown in figure 1 and typical situations 
in the (B, v)-plane are shown in figure 2. 

For sufficiently weak disturbances, i.e. 7 near unity, a solitary-wave solution 
exists and appears as a lobe in the (B, v)-plane about the centre at B, = 7, v1 = 0;  
inside this is a complete set of periodic solutions of increasing entropy and 
decreasing amplitude as they circle nearer and nearer to the centre. This situation 
holds because either the domain D,, containing the complex roots for V ,  is empty 
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or lies to the right of the solitary-wave lobe. D, is empty in the region above and 
to the left of the curve Cl in figure 1 ; on this curve it appears as a single point which 
for Po > 0.03704 (or 9 < 1.6) is outside the solitary wave, while otherwise it is 
inside. In  the latter case, as 9 is increased D, expands excluding more and more 
of the periodic solutions until it intersects the solitary-wave lobe; this region is 
shown as a small triangle bounded by curves C,, C, and the line Po = 0 in figure 1. 

Case I. 
Piston speed = 0.1 Dv empty v 0 2  

0 

0 4  r Solitary wave 
v 02  Case 11. 

Piston speed = 0 4  0 

Case 111. 
Piston speed = 05 

Case V. 
Piston speed = 1.5 

0.4 
0.2 

V 

1.0 2.0 3 0  
B 

FIGURE 2. Behaviour of the steady-state solutions in the (B, v)-plane. 

For the larger values of Po the domain D, approaches the solitary-wave lobe from 
the outside. In  both cases intersection occurs on the curve C, given by 

2(2 - 7I3/r2(3 - 7) = Po/(l + P O ) ?  (3.12) 

and beyond this the solitary wave no longer exists. 
This is the mathematical description of the limit to the solitary wave. 

Physically, the limit corresponds to the formation of an infinitely weak shock at 
the peak of the wave or, in the cold-plasma case, to  the looping of the particle 
orbits. Vernon (1960) expresses the limiting condition (3.12) as 

V, = v, where v3 = P0/U2,  (3.13) 
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and V, is the value of I' a t  the solitary-wave peak. From this form we see 
Iuial = V, U = (po/V,)h = (2p,Vm)4, i.e. the fluid speed equals the characteristic 
speed. 

As 7 increases beyond its value on the curve C, discontinuities can, and as we 
shall see in the numerical results, do appear in the solution. But of the main 
types of steady-state solution on the fist sheet, i.e. that containing the initial 
state, only the periodic solutions exist here. Their number is gradually decreased 
as, with increasing 7, the domain D, approaches the second singular point 
(Bl, vl). After it has reached this point, a condition represented by curve C, in 
figure 1, D, again recedes to the right. But now (Bl, vl) is a saddle point on the 
second sheet and can be joined to the initial state by the discontinuous solution. 
This is made up of two parts: on the first sheet there is the remnant of the 
solitary-wave solution issuing from the initial state with a positive dv/dB;  and 
on the second sheet there is a solution issuing from (Bl, vl) with a negative dv/dB.  
They meet at a point in the (B, v)-plane where a jump discontinuity in V ,  equal 
to the difference of the two roots of (3.4), joins them. The situation is shown as the 
last case in figure 2 and the form of the solution as plotted against the Lagrangian 
space co-ordinate is shown in figure 6. 

The physical meaning of the limit on the existence of the discontinuous solution 
is clear from (3.9) and the ensuing discussion: in the constant states the charac- 
teristic speed (2pV)4 equals (PiBi)a and the flow speed lu;l = Aft@; thus the 
condition M2, < P1 is the usual shock condition, that the flow be subsonic behind 
the shock, applied at  the final constant state. 

4. Numerical solutions of the time-dependent equations 

in their Lagrangian form, taking 
For the numerical calculations it is most convenient to work with the equations 

as the Lagrangian space co-ordinate. In  addition, to enable the computations 
to be simply continued through the shock fronts we introduce a von Neumann- 
Richtmyer artificial viscosity q (von Neumann & Richtmyer 1950). With A /  V 2  
introduced for the pressure, the equations are then 

u,+[A/V2+q++B2I5 = 0,  

} (4.3) 
q'v = a2h2(uf) if u5 < 0,  

qv = 0 if u5 0,  
A, + (q  V )  = 0 where 

Bg = B V -  1, (4.4) 

where a2 is a parameter used to control the amount of artificial viscosity intro- 
duced and h is the mesh spacing in 5. The initial and boundary conditions are: 

t = 0 ,  5 2 0 :  B = V = 1 ,  u = q = o ,  A=$po;  (4.5) 

t > 0, < = 0:  BE = 0, u = up(t). (4.6) 
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The difference scheme used to approximate these equations is described in an 
appendix; it allows explicit integration of the first three equations while (4.4) is 
solved implicitly; all differences are centred on a staggered mesh except for the 
expression for qe in the first equation. Criteria for the stability of the difference 
scheme are effectively the same as those for pure fluid dynamics, there being one 
for the shocked region and one for the smooth flow outside this as described, for 
example, by Richtmyer (1957). A running check on the computation is provided 
by the energy conservation integral, 

where the suffix P is used to refer to quantities evaluated at  the piston. 
For illustrative purposes attention has been concentrated on five cases for 

each of which Po = 0.1. In  each case the piston is accelerated uniformly from rest 
to a h a 1  velocity in either one or two units of time and then held a t  this velocity 
thereafter. The five cases correspond to final velocities of 0.1,0.4,0-5, 1.0 and 1.5, 
these being chosen so as to demonstrate zach of the types of solution to be 

0 2 2  0 0 10 20 30 40 50 60 70 80 90 100 

f 
FIGURE 3. The wave-form for Ti at t = 60.0 for case 11; f is the Lagrangian co-ordinate. 

expected from the analysis of the steady-state solutions. After an initial period 
in which the effect of the acceleration is dominant, the solutions settle down to a 
fairly common form consisting of four parts. The first, comprising the leading 
edge of the disturbance, starts out as an exponential then rises more steeply and 
possibly ends with a discontinuity: it  propagates into the plasma at a speed which 
is eventually constant. This is followed by a wave train of increasing length, the 
amplitude of the waves decreasing away from the disturbance front until a, 
constant state is reached; the constant state makes up the third portion of the 
solution and extends almost to the piston to which it is joined by a narrow 
boundary layer. Figure 3 shows a typical example. 

For three of these cases a quantitative description can be given of the eventual 
form using only the initial and boundary data and constructing a steady-state 
solution from the basic solutions described in the previous section. To determine 
which of these basic solutions are available we need to identify each case with a 
point on figure 1 : Po is given and the other parameter is matched by identifying 
the final piston velocity with the fluid velocity in the second constant state, thus 
determining 7, U ,  etc. Using this method the five cases correspond to the points 
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marked with crosses in figure 1 and the situation on the (B, v)-plane for each case 
is shown in figure 2 .  

As would be expected, case V is the most straightforward: a discontinuous 
steady-state solution joining the initial state to the state corresponding to the 
piston velocity exists and our matching is therefore correct. The piston reached its 
final velocity at  t = 2.0 and by t = 12.5 the front of the wave looked as in figure 6; 
the corresponding steady-state solution is shown on the same figure. There is 
very close agreement except in a region one unit wide in which the artificial 
viscosity resolves the discontinuity in V.  The shock speed and the state behind 
the front agree very well too, as can be seen from table 1. 

Case I Case I1 Case I11 Case IV  Case V 
Piston speed ... 0- 1 0.4 0.5 1.0 1.5 

Steady-state solutions 

(i) Constant state 
U 1.1265 1.3909 1.4888 2.0394 2.6631 

Bl 1.0974 1.4037 1.5056 1.9621 2.2897 
Vl 0.9112 0.7124 0.6642 0.5096 0.4367 
A, 0.0502 0.0615 0.0710 0.1726 0.3668 

(ii) Largest periodic solution 
Wavelength 
A 

Time-dependent solutions 
U 

(i) Constant state 
zc 
B 
V 
A 

(ii) Wave train 
Wavelength 
A 

00 
0.0500 

t = 100 

0-1000 
1.0998 
0.909 

- 

0.0500 

co 
0.0500 

t = 150 

1.440 

0-4000 
1.419 
0.705 
- 

10.7 
0.0506 

9.80 
0.0563 
t = 40 

1.53 

0.5000 
1.530 
0.653 
- 

8.8 
0.069 

4.45 0 
0-1719 0.3668 
t = 20 t = 12.5 

2.04 2.66 

1.0000 1.5000 
1.970 2.291 
0.508 0.4365 
- 0.371 

- 4.0 
0.174 - 

TABLE 1. Summary of the cases computed: for each /lo = 0.1. Limiting solitary wave 
occurs at 7 = 1.4685, U = 1.4524 at peak of which V = 0.3619. Discontinuous solution 
exists for 7 > 2.1807, U > 2.4198. 

In  case IV the wave train behind the discontinuity appears and in case I11 
these waves are of increased amplitude and wavelength. Parts of the solutions 
(at t = 40 and t = 20, respectively) are shown in figures 4 and 5: by this time the 
leading part of the solution has reached a steady form and the first wave of the 
following train is beginning to have a readily identifiable wavelength. Turning to 
the (B, v) diagrams in figure 2, we can see how this form is made up from the 
steady-state solutions. The second singularity is still on the sheet corresponding 
to the larger root for V and around it there is a set of periodic solutions, that with 
largest amplitude touching the boundary of the domain D, at a point on the 
B-axis. Also passing through this point and touching D, is a solution on the 
other sheet, using the smaller root for V ,  which eventually intersects the curve 
corresponding to what is left of the solitary wave. Where these two solutions and 
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the boundary of D, touch is the only place where a solution may change from one 
sheet to the other without causing a discontinuity in V and A .  Thus a solution 
can be made up of (i) an initial part along the solitary wave curve, (ii) a jump to 
the second sheet, (iii) continuation on this sheet to the point of contact with the 
boundary of D, on the B-axis, ending with (iv) the continuous traversal of the 

FIGURE 4. Comparison of the time-dependent solution and a composite steady-state 
solution for case 111. 

periodic-solution loop. Solutions constructed in this way are shown for cases I11 
and IV on figures 4 and 5 ,  below those obtained for the time-dependent problem. 
There is a very considerable agreement even at this early stage in the develop- 
ment of the wave train and with the matching of parameters described above. 

In  table 1 the shock velocities and the values of the variables in the constant 
state that develops near the piston are compared with those obtained from the 
steady state. As we should expect, the shock velocity and the characteristics of 
the wave train are consistent, their difference from the steady-state values 
arising mainly from incorrect choice of the parameter 7; but the constant state 
cannot be properly compared with anything from the steady-state solutions for 
its entropy is that of the largest periodic solution forming the head of the wave 
train, and not that of the constant state at  the second singularity. Further, it is 
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joined to the front of the disturbance by the time-dependent part of the wave 
train. 

The values of the parameters for case I1 suggest that a type of solution may be 
obtained in which there are no discontinuities and the solitary wave plays a 
larger role. However, here the matching of the parameters breaks down and no 
description of the solution in terms of the steady-state solution has been possible 

shock position 37.5 

V 

V 

-20 -16 -12 -8 -4 0 4 8 

E 
FIGURE 5. Comparison of the time-dependent solution and a composite steady-state 

solution for case IV. 

either in this case or in case I. The speed of the wave front increases until it  is 
larger than the critical speed of 1-4524 at which stage it breaks. This occurs at 
about t = 60 after which the speed decreases and is roughly constant between 
t = 100 and t = 150 when the computation was stopped. In  the whole computa- 
tion the most constant parameter was the wavelength of the leading waves which 
remained at 10.7 from t = 100: in contrast to cases I11 and I V  however, the 
significance of this value has not been found. 

The low piston speed for case I was chosen with the hope that the behaviour 
of the solution might approximate the asymptotic form given by Gardner & 
Morikawa (1960) for a cold plasma. The equations that they give can also be 
derived for the present case and imply that 1 - B, 1 - p and u( 1 +Po)-* are all 
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equal; moreover, in the particular solution they give, the waves have B definite 
amplitude related to the piston velocity and widen with time like t*. At t = 100 
when the integration of case I was stopped the amplitude of the waves was still 
growing, alt.hough it was already much greater than that predicted. None of the 
other features were reproduced to a useful degree of approximation. 

FIGURE 6. 

5 
Comparison of the time-dependent and steady-state solutions for case V. 

5. Discussion of the results 
We have shown that when the ‘shock’ speed or compression is too great for the 

solitary wave to exist, the two-fluid equations for a warm plasma still admit 
steady-state solutions. These are generalized solutions invoIving discontinuities 
in the fluid variables at which entropy is gained and which lead either to periodic 
waves of a distinctive form or to a constant state. Moreover, in these cases the 
solution of the time-dependent piston problem converges to the corresponding 
steady-state solution in so far as this is possible: when the discontinuity is 
followed by a wave train the boundary condition on the piston has to be met 
through a time-dependent transition region. 

These solutions are certainly not collisionless shocks, there being no mechanism 
specified for the entropy gain: they bear some resemblance to the shock within 
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a shock that one obtains in conventional fluid dynamics with a thermally 
conducting inviscid fluid. The distance scale on which the discontinuity appears 
is the familiar geometric mean of the ion and electron gyromagnetic radii so its 
resolution demands a mechanism operating on a scale length related to either 
the electron gyromagnetic radius or perhaps the Debye length. It may be signi- 
ficant that in calculating the charge separation field from the solitary-wave 
solution, Vernon (1960) found that it became discontinuous where the solitary 
wave ceased to exist: clearly the assumption of charge neutrality breaks down 
here. 

The present work, in common with most previous studies, has been concerned 
exclusively with transverse waves, i.e. those in which the magnetic field is 
perpendicular to the direction of wave propagation at all times. Recently 
Saffman (1961a) has considered first the longitudinal case and later (1961 b )  the 
general case of arbitrary orientation. Working with a cold plasma, he has been 
restricted to relatively weak waves but has obtained waves travelling a t  speeds 
greatly in excess of the Alfvh speed and also shock-like transitions to oscillatory 
states behind the wave front. These occur over distances comparable with the 
ion gyromagnetic radius. Extensions of the numerical work described above have 
given similar results which will appear later. 

This work was carried out while the author was on sabbatical leave from the 
United Kingdom Atomic Energy Authority, Harwell. 

Appendix Finite difference equations 

Using a constant mesh size hand a time step k,  let u be correctly centred at  points 
6 = jh,  t = (n - 4) k, ( j ,  n = 0,1,  . . .) and denote its values at these points by 
u?; similarly let V ,  B and A be centred at  [ = ( j  + Q) h, t = nk, their values being 
denoted by VT, etc.; finally qV and q will be centred a t  [ = ( j  + Q) h, t = (n - 3) k .  
We then have the difference equations 

un+l= 3+1 U?+l- (k/h){A?+l/( V?+I)~-A?/( Vy)2 +@+I -qy i- 4 [ ( q + 1 ) ~  - (B7)21)t 
(A. 1) 
(A. 2 )  

(A. 3) 

VT+1 = V? + (k /h)  (UT$f - ujn+1), 
/q+l = Ai” - (qV)?+’( q + 1 -  V?) 3 ,  

- (2 + h2V?+’) q+’ + q2; = - h2, 

q?+1 = 2(q V)?+’/( V?+1+ V?). 
(A. 4) 

(A. 5 )  

These equations are solved in the order given. When solving (A. 2), u2;-+’ is 
obtained from the expression for the piston velocity which is given; and (A. 4) 
which is implicit needs boundary conditions a t  each end. At the piston we have 
B?tl = B;+’ while the other boundary is allowed to move outwards by adding 
points until I-B?$: - 1.01 < E where 8 is some prescribed error. Since V decays to 
its value at  x = + 00 more rapidly than B,  1 B - 1-01 has a tail of the form e-” and 
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we use this as the outer boundary condition. The tri-diagonal matrix equations 
for B are solved in the usual recurrence relation manner (see, for example, 
Richtmyer 1957). 

Stability 
In  regions of smooth flow away from the almost discontinuous regions we may 
take q = 0. Then the amplification matrix for the variables u, V , A  has the 
characteristic equation 

( A  - 1) [A2 - ( 2  - 492d2) h + 11 = 0, ( A. 6 )  

where g = (k /h)s ,  s = sinimh 

and 

= 2A/ V3+ O(h2),  usually. 

Thus for all practical purposes the stability condition is the usual one, that 
(hllc) > (2A/V3)4, the sound speed in Lagrangian co-ordinates. 

In  the ‘shocked region’ the magnetic field and its first derivative are con- 
tinuous so that in this narrow region the equations are identical to those of fluid 
dynamics: for these, Richtmyer (1957) gives the condition 

where 7 is the shock strength, or compression ratio of the shock. 
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